Unet
¶Unet-1
¶import torch
import torch.nn as nn
def make_divisible(value, divisor=8, min_value=None, min_ratio=0.9):
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
if new_value < min_ratio * value:
new_value += divisor
return new_value
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.relu = nn.ReLU(inplace=True)
self.conv_1 = nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=1, padding=1, bias=False)
self.norm_1 = nn.BatchNorm2d(out_channels)
self.conv_2 = nn.Conv2d(out_channels, out_channels,
kernel_size=3, stride=1, padding=1, bias=False)
self.norm_2 = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.relu(self.norm_1(self.conv_1(x)))
x = self.relu(self.norm_2(self.conv_2(x)))
return x
class UpSamplingBlock(nn.Module):
def __init__(self, in_channels, out_channels, up_sampling_mode='transpose'):
super().__init__()
if up_sampling_mode == 'transpose':
self.up_sampling = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels,
kernel_size=2, stride=2, padding=0, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
else:
if in_channels == out_channels:
self.up_sampling = nn.Upsample(scale_factor=2, mode=up_sampling_mode, align_corners=True)
else:
self.up_sampling = nn.Sequential(
nn.Upsample(scale_factor=2, mode=up_sampling_mode, align_corners=True),
nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
x = self.up_sampling(x)
return x
class UNet(nn.Module):
def __init__(self, in_channels=3, classes=10, up_sampling_mode='transpose', channel_ratio=1.0):
super().__init__()
self.down_sampling = nn.MaxPool2d(kernel_size=2, stride=2)
self.left_layer_1 = ConvBlock(in_channels, make_divisible(64 * channel_ratio))
self.left_layer_2 = ConvBlock(make_divisible(64 * channel_ratio), make_divisible(128 * channel_ratio))
self.left_layer_3 = ConvBlock(make_divisible(128 * channel_ratio), make_divisible(256 * channel_ratio))
self.left_layer_4 = ConvBlock(make_divisible(256 * channel_ratio), make_divisible(512 * channel_ratio))
self.middle_layer = ConvBlock(make_divisible(512 * channel_ratio), make_divisible(1024 * channel_ratio))
self.up_sampling_1 = UpSamplingBlock(make_divisible(1024 * channel_ratio), make_divisible(512 * channel_ratio),
up_sampling_mode)
self.right_layer_1 = ConvBlock(make_divisible(1024 * channel_ratio), make_divisible(512 * channel_ratio))
self.up_sampling_2 = UpSamplingBlock(make_divisible(512 * channel_ratio), make_divisible(256 * channel_ratio),
up_sampling_mode)
self.right_layer_2 = ConvBlock(make_divisible(512 * channel_ratio), make_divisible(256 * channel_ratio))
self.up_sampling_3 = UpSamplingBlock(make_divisible(256 * channel_ratio), make_divisible(128 * channel_ratio),
up_sampling_mode)
self.right_layer_3 = ConvBlock(make_divisible(256 * channel_ratio), make_divisible(128 * channel_ratio))
self.up_sampling_4 = UpSamplingBlock(make_divisible(128 * channel_ratio), make_divisible(64 * channel_ratio),
up_sampling_mode)
self.right_layer_4 = ConvBlock(make_divisible(128 * channel_ratio), make_divisible(64 * channel_ratio))
self.final_layer = nn.Conv2d(make_divisible(64 * channel_ratio), classes,
kernel_size=1, stride=1, padding=0)
def forward(self, x):
left_1 = self.left_layer_1(x)
left_2 = self.left_layer_2(self.down_sampling(left_1))
left_3 = self.left_layer_3(self.down_sampling(left_2))
left_4 = self.left_layer_4(self.down_sampling(left_3))
x = self.middle_layer(self.down_sampling(left_4))
x = self.up_sampling_1(x)
x = torch.cat((x, left_4), dim=1)
x = self.right_layer_1(x)
x = self.up_sampling_2(x)
x = torch.cat((x, left_3), dim=1)
x = self.right_layer_2(x)
x = self.up_sampling_3(x)
x = torch.cat((x, left_2), dim=1)
x = self.right_layer_3(x)
x = self.up_sampling_4(x)
x = torch.cat((x, left_1), dim=1)
x = self.right_layer_4(x)
x = self.final_layer(x)
return x
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
in_data = torch.randn(1, 3, 512, 512).to(device) # b, c, h, w
model = UNet(in_channels=3, classes= 2, up_sampling_mode='transpose', channel_ratio= 1).to(device)
out_data = model(in_data)
print(out_data.shape)
Vit
¶import torch
import torch.nn as nn
import torch.nn.functional as F
class PatchEmbedding(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_channels=3, embed_dim=768):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = (img_size // patch_size) ** 2
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x) # [B, C, H, W] -> [B, embed_dim, n_patches**0.5, n_patches**0.5]
x = x.flatten(2).transpose(1, 2) # [B, embed_dim, n_patches] -> [B, n_patches, embed_dim]
return x
class PositionalEncoding(nn.Module):
def __init__(self, embed_dim, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, embed_dim)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_dim, 2).float() * (-torch.log(torch.tensor(10000.0)) / embed_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TransformerEncoderLayer(nn.Module):
def __init__(self, embed_dim, num_heads, dim_feedforward=2048, dropout=0.1):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
self.linear1 = nn.Linear(embed_dim, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, embed_dim)
self.norm1 = nn.LayerNorm(embed_dim)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, src):
src2 = self.norm1(src)
src2 = self.self_attn(src2, src2, src2)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.linear2(self.dropout(F.relu(self.linear1(src2))))
src = src + self.dropout2(src2)
return src
class VisionTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_channels=3, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., num_classes=1000, dropout=0.1):
super(VisionTransformer, self).__init__()
self.patch_embedding = PatchEmbedding(img_size, patch_size, in_channels, embed_dim)
self.pos_encoder = PositionalEncoding(embed_dim, dropout)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.encoder_layers = nn.ModuleList([TransformerEncoderLayer(embed_dim, num_heads, int(embed_dim*mlp_ratio), dropout) for _ in range(depth)])
self.norm = nn.LayerNorm(embed_dim)
self.fc = nn.Linear(embed_dim, num_classes)
def forward(self, x):
B = x.shape[0]
x = self.patch_embedding(x) # [B, num_patches, embed_dim]
cls_tokens = self.cls_token.expand(B, -1, -1) # [B, 1, embed_dim]
x = torch.cat((cls_tokens, x), dim=1) # [B, num_patches+1, embed_dim]
x = self.pos_encoder(x) # Add positional encoding
for layer in self.encoder_layers:
x = layer(x)
x = self.norm(x)
x = x[:, 0] # Use the class token output for classification
x = self.fc(x)
return x
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
in_data = torch.randn(2, 3, 224, 224).to(device) # b, c, h, w
model = VisionTransformer(img_size= 224, patch_size= 16).to(device)
out_data = model(in_data)
print(out_data.shape)
torch.Size([2, 1000])
MAE
¶import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class PatchEmbedding(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = (img_size // patch_size) ** 2
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x) # [B, embed_dim, H/patch_size, W/patch_size]
x = x.flatten(2).transpose(1, 2) # [B, num_patches, embed_dim]
return x
class TransformerEncoder(nn.Module):
def __init__(self, embed_dim=768, num_heads=12, num_layers=12, mlp_ratio=4.0):
super().__init__()
self.layers = nn.ModuleList([
nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=num_heads,
dim_feedforward=int(embed_dim * mlp_ratio)
)
for _ in range(num_layers)
])
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class MAE(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
encoder_layers=12, decoder_embed_dim=512, decoder_layers=4, mask_ratio=0.75):
super().__init__()
self.patch_embed = PatchEmbedding(img_size, patch_size, in_chans, embed_dim)
self.num_patches = self.patch_embed.num_patches
self.mask_ratio = mask_ratio
# Positional encoding
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, embed_dim))
# Encoder
self.encoder = TransformerEncoder(embed_dim, num_heads=12, num_layers=encoder_layers)
# Mask token
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# Decoder
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim)
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, self.num_patches, decoder_embed_dim))
self.decoder = TransformerEncoder(decoder_embed_dim, num_heads=8, num_layers=decoder_layers)
self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size * patch_size * in_chans) # Pixel values
# Weight initialization
self._init_weights()
def _init_weights(self):
nn.init.normal_(self.pos_embed, std=0.02)
nn.init.normal_(self.mask_token, std=0.02)
nn.init.normal_(self.decoder_pos_embed, std=0.02)
def random_masking(self, x):
B, N, D = x.shape
num_mask = int(N * self.mask_ratio)
perm = torch.rand(B, N).argsort(dim=1) # Random shuffle
mask = perm[:, :num_mask]
keep = perm[:, num_mask:]
x_masked = torch.gather(x, dim=1, index=keep.unsqueeze(-1).expand(-1, -1, D))
return x_masked, mask, keep
def forward(self, x):
# Patch embedding
x = self.patch_embed(x) # [B, num_patches, embed_dim]
x += self.pos_embed
# Random masking
x_masked, mask, keep = self.random_masking(x)
print(x_masked.shape, mask.shape, keep.shape)
# Encoder
encoded = self.encoder(x_masked)
# Add mask tokens for decoder input
B, _, D = x.shape
mask_tokens = self.mask_token.expand(B, mask.shape[1], D)
x_full = torch.cat([encoded, mask_tokens], dim=1)
x_full = torch.gather(x_full, dim=1, index=torch.argsort(torch.cat([keep, mask], dim=1), dim=1).unsqueeze(-1).expand(-1, -1, D))
# Decoder
x_full = self.decoder_embed(x_full) + self.decoder_pos_embed
decoded = self.decoder(x_full)
pred = self.decoder_pred(decoded) # [B, num_patches, patch_size*patch_size*in_chans]
return pred
# Example usage
if __name__ == "__main__":
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
img = torch.randn(2, 3, 224, 224).to(device)
model = MAE(embed_dim= 768).to(device)
pred = model(img) # Output predictions
print(pred.shape) # [B, num_patches, patch_size*patch_size*in_chans]
torch.Size([2, 49, 768]) torch.Size([2, 147]) torch.Size([2, 49]) Encoder:torch.Size([2, 49, 768]), mask_tokens:torch.Size([2, 147, 768]) torch.Size([2, 196, 768])
Swin Transformer
¶假设输入图像为:1,3,224,224
。仅以stage1
(加上PatchMerging
)为例
PatchEmbed
:¶class PatchEmbed(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
...
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
...
def forward(self, x):
...
x = self.proj(x)
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
...
return x
参数:输入图片尺寸,分割每个小patch大小,输入通道数量,编码维度 输出:[batch_size, num_pathces, embed_dim] 一般会再补充一个位置编码
... self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) ... x = x+ self.absolute_pos_embed输出:首选卷积处理得到:[1, 96, 56, 56](224/4=56)然后转化到token形式为:[1, 3136, 96]
Swin Transformer Block
¶# 仅以stage1分析
class SwinTransformerBlock(...):
def __init__(input_resolution, ...):
...
def forward(self, x):
H, W = self.input_resolution # 56, 56
B, L, C = x.shape
...
x = x.view(B, H, W, C) # 1,3136,96--> 1, 56, 56, 96
# 交替转换,切分好不同的window
if self.shift_size > 0:
if not self.fused_window_process:
# 通过 roll 去进行重新排列
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
else:
x_windows = WindowProcess.apply(x, B, H, W, C, -self.shift_size, self.window_size)
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
# 拉平处理
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# 计算注意力得分
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# 还原回开始形状
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
再stage1
中输入为:[1, 3136, 96](batch_size=4,相当于对于224改变为56,那么self.input_resolution=(56,56)
),不过值得注意的一点是再block
中对于W-MSA
和SW-MSA
是交替进行的,因此会有一个self.shift_size
。接下来就是切分不同的window
(就在这个window里面计算注意力
)(window_size=7
)通过window_partition
(可以直接理解为:我把图片重新切分成window_size的小图片)处理得到:[64, 7, 7, 96](1, 56, 56, 96-->64, 7, 7, 96),然后就是熟悉的拉平处理(就是把图片宽高拉到一起)得到:[64, 49, 96]
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
划分好不同的window
之后就直接计算attention-score
:
class WindowAttention(...):
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
...
# 定义相对位置编码
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
def forward(...):
# 计算注意力得分,和普通的计算注意力没什么区别
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
# 相对位置编码
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
计算window-attention score,引入一个 相对位置编码,输入维度是:[64, 49, 96],然后计算注意力得到:[64, 49, 96],然后还原为开始形状得到:[64, 7, 7, 96]
# reverse cyclic shift
if self.shift_size > 0:
if not self.fused_window_process:
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = WindowProcessReverse.apply(attn_windows, B, H, W, C, self.shift_size, self.window_size)
else:
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
x = shifted_x
def window_reverse(windows, window_size, H, W):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
再经过上述操作之后然后输入到patchmerging
,具体操作如下所示:
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
这样一来就实现了尺寸的改变,也就完成了一个完整的satge
值得注意的是: 代码一:
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution # 56 56
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
# 生成h/w的3,3的切片
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
这部分代码就是只在SW-MSA
中进行操作,逐行解读(stage1为例)在处理SW-MSA
时需要对特征图进行重新排列,因此就会:
if self.shift_size > 0:
if not self.fused_window_process:
# 通过 roll 进行重新排列
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
else:
x_windows = WindowProcess.apply(x, B, H, W, C, -self.shift_size, self.window_size)
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
通过上面处理(先进行torch.roll
移动一波,这样就可以使最后都有相同的形状,然后再通过window_partition
切分一波)保证SW-MSA
操作可以实现(都是相同大小)
torch.roll
相当于对张量按照shifts=(dima,dimb)
方向移动,负数:向左/上移动,正数:向右/下移动
# --------------------------------------------------------
# Swin Transformer
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ze Liu
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
fused_window_process=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
self.fused_window_process = fused_window_process
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
if not self.fused_window_process:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
else:
x_windows = WindowProcess.apply(x, B, H, W, C, -self.shift_size, self.window_size)
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
# reverse cyclic shift
if self.shift_size > 0:
if not self.fused_window_process:
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = WindowProcessReverse.apply(attn_windows, B, H, W, C, self.shift_size, self.window_size)
else:
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
x = shifted_x
x = x.view(B, H * W, C)
x = shortcut + self.drop_path(x)
# FFN
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
nW = H * W / self.window_size / self.window_size
flops += nW * self.attn.flops(self.window_size * self.window_size)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = H * W * self.dim
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
return flops
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
fused_window_process=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
fused_window_process=fused_window_process)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
def flops(self):
flops = 0
for blk in self.blocks:
flops += blk.flops()
if self.downsample is not None:
flops += self.downsample.flops()
return flops
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
def flops(self):
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class SwinTransformer(nn.Module):
r""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, fused_window_process=False, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
fused_window_process=fused_window_process)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward_features(self, x):
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def flops(self):
flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
flops += layer.flops()
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
flops += self.num_features * self.num_classes
return flops
if __name__ == '__main__':
x = torch.randn(1, 3, 224, 224)
model = SwinTransformer()
out = model(x)
print(out.shape)
torch.Size([1, 1000])