import math import torch import torch.nn as nn import torchvision import numpy as np __all__ = ['ResNet50', 'ResNet101','ResNet152'] def make_divisible(value, divisor=8, min_value=None, min_ratio= 0.9): if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) if new_value < min_ratio * value: new_value += divisor return new_value def Conv1(in_planes, places, stride=2): return nn.Sequential( nn.Conv2d(in_channels=in_planes, out_channels=places, kernel_size=7, stride=stride, padding=3, bias=False), nn.BatchNorm2d(places), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) class Bottleneck(nn.Module): def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 4): super(Bottleneck,self).__init__() self.expansion = expansion self.downsampling = downsampling self.bottleneck = nn.Sequential( nn.Conv2d(in_channels= in_places, out_channels= places, kernel_size=1,stride=1, bias=False), nn.BatchNorm2d(places), nn.ReLU(inplace=True), nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(places), nn.ReLU(inplace=True), nn.Conv2d(in_channels=places, out_channels=places*self.expansion, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(places*self.expansion), ) if self.downsampling: self.downsample = nn.Sequential( nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(places*self.expansion) ) self.relu = nn.ReLU(inplace=True) def forward(self, x): residual = x out = self.bottleneck(x) if self.downsampling: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, blocks, num_classes=1000, expansion = 4, bias: bool= False, channel_ratio: float = 1.0): super(ResNet,self).__init__() self.bias = bias self.num_classes = num_classes self.expansion = expansion self.conv1 = Conv1(in_planes = 3, places= make_divisible(64 * channel_ratio)) # self.layer1 = self.make_layer(in_places = 64, places= 64, block=blocks[0], stride=1) # self.layer2 = self.make_layer(in_places = 256, places=128, block=blocks[1], stride=2) # self.layer3 = self.make_layer(in_places = 512, places=256, block=blocks[2], stride=2) # self.layer4 = self.make_layer(in_places = 1024,places=512, block=blocks[3], stride=2) self.layer1 = self.make_layer(in_places = make_divisible(64 * channel_ratio), places= make_divisible(64 * channel_ratio), block=blocks[0], stride=1) self.layer2 = self.make_layer(in_places = make_divisible(256 * channel_ratio), places= make_divisible(128 * channel_ratio), block=blocks[1], stride=2) self.layer3 = self.make_layer(in_places = make_divisible(512 * channel_ratio), places= make_divisible(256 * channel_ratio), block=blocks[2], stride=2) self.layer4 = self.make_layer(in_places = make_divisible(1024 * channel_ratio),places=make_divisible(512 * channel_ratio), block=blocks[3], stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def MLP(self, input): self.weight = nn.Parameter(torch.empty(size= (input.shape[1], self.num_classes))).to(device= input.device) nn.init.xavier_uniform_(self.weight.data, gain= 1.414) def make_layer(self, in_places, places, block, stride): layers = [] layers.append(Bottleneck(in_places, places, stride, downsampling =True)) for i in range(1, block): layers.append(Bottleneck(places*self.expansion, places)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) # 输出结果 self.MLP(x) out = torch.matmul(x, self.weight) return out def ResNet50(num_classes= 2, channel_ratio: float = 1.0): return ResNet(blocks= [3, 4, 6, 3], num_classes= num_classes, channel_ratio= channel_ratio) def ResNet101(num_classes, channel_ratio: float = 1.0): return ResNet(blocks= [3, 4, 23, 3], num_classes= num_classes, channel_ratio= channel_ratio) def ResNet152(num_classes, channel_ratio: float = 1.0): return ResNet(blocks= [3, 8, 36, 3], num_classes= num_classes, channel_ratio= channel_ratio) if __name__=='__main__': device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(device) model = ResNet101(num_classes= 8, channel_ratio= 1).to(device= device) # input = torch.randn(1, 3, 512, 1024).to(device= device) input = torch.rand(1, 3, 512, 512).to(device= device) out = model(input) print(out.shape)